home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
Language/OS - Multiplatform Resource Library
/
LANGUAGE OS.iso
/
b
/
b.lha
/
B
/
src
/
bint
/
b1nuR.c
< prev
next >
Wrap
C/C++ Source or Header
|
1988-11-24
|
6KB
|
285 lines
/* Copyright (c) Stichting Mathematisch Centrum, Amsterdam, 1985. */
/*
$Header: b1nuR.c,v 1.4 85/08/22 16:51:49 timo Exp $
*/
/* Rational arithmetic */
#include "b.h"
#include "b0con.h"
#include "b1obj.h"
#include "b1num.h"
#include "b3err.h"
/* Length calculations used for fraction sizes: */
#define Maxlen(u, v) \
(Roundsize(u) > Roundsize(v) ? Roundsize(u) : Roundsize(v))
#define Sumlen(u, v) (Roundsize(u)+Roundsize(v))
#define Difflen(u, v) (Roundsize(u)-Roundsize(v))
/* To shut off lint and other warnings: */
#undef Copy
#define Copy(x) ((integer)copy((value)(x)))
/* Globally used constants */
rational rat_zero;
rational rat_half;
/* Make a normalized rational from two integers */
Visible rational mk_rat(x, y, len) integer x, y; int len; {
rational a;
integer u,v;
if (y == int_0) {
if (interrupted)
return rat_zero;
syserr(MESS(1200, "mk_rat(x, y) with y=0"));
}
if (x == int_0 && len <= 0) return (rational) Copy(rat_zero);
if (Msd(y) < 0) { /* interchange signs */
u = int_neg(x);
v = int_neg(y);
} else {
u = Copy(x);
v = Copy(y);
}
a = (rational) grab_rat();
if (len > 0 && len+2 <= Maxintlet) Length(a) = -2 - len;
if (u == int_0 || v == int_1) {
/* No simplification possible */
Numerator(a) = Copy(u);
Denominator(a) = int_1;
} else {
integer g, abs_u;
if (Msd(u) < 0) abs_u = int_neg(u);
else abs_u = Copy(u);
g = int_gcd(abs_u, v);
release((value) abs_u);
if (g != int_1) {
Numerator(a) = int_quot(u, g);
Denominator(a) = int_quot(v, g);
} else {
Numerator(a) = Copy(u);
Denominator(a) = Copy(v);
}
release((value) g);
}
release((value) u); release((value) v);
return a;
}
/* Arithmetic on rational numbers */
/* Shorthands: */
#define N(u) Numerator(u)
#define D(u) Denominator(u)
Visible rational rat_sum(u, v) register rational u, v; {
integer t1, t2, t3, t4;
rational a;
t2= int_prod(N(u), D(v));
t3= int_prod(N(v), D(u));
t1= int_sum(t2, t3);
t4= int_prod(D(u), D(v));
a= mk_rat(t1, t4, Maxlen(u, v));
release((value) t1); release((value) t2);
release((value) t3); release((value) t4);
return a;
}
Visible rational rat_diff(u, v) register rational u, v; {
integer t1, t2, t3, t4;
rational a;
t2= int_prod(N(u), D(v));
t3= int_prod(N(v), D(u));
t1= int_diff(t2, t3);
t4= int_prod(D(u), D(v));
a= mk_rat(t1, t4, Maxlen(u, v));
release((value) t1); release((value) t2);
release((value) t3); release((value) t4);
return a;
}
Visible rational rat_prod(u, v) register rational u, v; {
integer t1, t2;
rational a;
t1= int_prod(N(u), N(v));
t2= int_prod(D(u), D(v));
a= mk_rat(t1, t2, Sumlen(u, v));
release((value) t1); release((value) t2);
return a;
}
Visible rational rat_quot(u, v) register rational u, v; {
integer t1, t2;
rational a;
if (Numerator(v) == int_0) {
error(MESS(1201, "in u/v, v is zero"));
return (rational) Copy(rat_zero);
}
t1= int_prod(N(u), D(v));
t2= int_prod(D(u), N(v));
a= mk_rat(t1, t2, Difflen(u, v));
release((value) t1); release((value) t2);
return a;
}
Visible rational rat_neg(u) register rational u; {
register rational a;
/* Avoid a real subtraction from zero */
if (Numerator(u) == int_0) return (rational) Copy(u);
a = (rational) grab_rat();
N(a) = int_neg(N(u));
D(a) = Copy(D(u));
Length(a) = Length(u);
return a;
}
/* Rational number to the integral power */
Visible rational rat_power(a, n) rational a; integer n; {
integer u, v, tu, tv, temp;
if (n == int_0) return mk_rat(int_1, int_1, 0);
if (Msd(n) < 0) {
if (Numerator(a) == int_0) {
error(MESS(1202, "in 0**n, n is negative"));
return (rational) Copy(a);
}
if (Msd(Numerator(a)) < 0) {
u= int_neg(Denominator(a));
v = int_neg(Numerator(a));
}
else {
u = Copy(Denominator(a));
v = Copy(Numerator(a));
}
n = int_neg(n);
} else {
if (Numerator(a) == int_0) return (rational) Copy(a);
/* To avoid necessary simplification later on */
u = Copy(Numerator(a));
v = Copy(Denominator(a));
n = Copy(n);
}
tu = int_1;
tv = int_1;
while (n != int_0 && !interrupted) {
if (Odd(Lsd(n))) {
if (u != int_1) {
temp = tu;
tu = int_prod(u, tu);
release((value) temp);
}
if (v != int_1) {
temp = tv;
tv = int_prod(v, tv);
release((value) temp);
}
if (n == int_1)
break; /* Avoid useless last squaring */
}
/* Square u, v */
if (u != int_1) {
temp = u;
u = int_prod(u, u);
release((value) temp);
}
if (v != int_1) {
temp = v;
v = int_prod(v, v);
release((value) temp);
}
n = int_half(n);
} /* while (n!=0) */
release((value) n);
release((value) u);
release((value) v);
a = (rational) grab_rat();
Numerator(a) = tu;
Denominator(a) = tv;
return a;
}
/* Compare two rational numbers */
Visible relation rat_comp(u, v) register rational u, v; {
int sd, su, sv;
integer nu, nv;
/* 1. Compare pointers */
if (u == v || N(u) == N(v) && D(u) == D(v)) return 0;
/* 2. Either zero? */
if (N(u) == int_0) return int_comp(int_0, N(v));
if (N(v) == int_0) return int_comp(N(u), int_0);
/* 3. Compare signs */
su = Msd(N(u));
sv = Msd(N(v));
su = (su>0) - (su<0);
sv = (sv>0) - (sv<0);
if (su != sv) return su > sv ? 1 : -1;
/* 4. Compute numerator of difference and return sign */
nu= int_prod(N(u), D(v));
nv= int_prod(N(v), D(u));
sd= int_comp(nu, nv);
release((value) nu); release((value) nv);
return sd;
}
Visible Procedure rat_init() {
rat_zero = (rational) grab_rat();
Numerator(rat_zero) = int_0;
Denominator(rat_zero) = int_1;
rat_half = (rational) grab_rat();
Numerator(rat_half) = int_1;
Denominator(rat_half) = int_2;
}
Visible Procedure endrat() {
release((value) rat_zero);
release((value) rat_half);
}